1		mark		Sub
(i)	$x=14 \cos 60 t$ so $x=7 t$ $y=14 \sin 60 t-4.9 t^{2}+1$ $\begin{aligned} & y=7 \sqrt{3} t-4.9 t^{2}+1 \\ & \left(y=12.124 \ldots t-4.9 t^{2}+1\right) \end{aligned}$	M1 A1 M1 A1 A1	Consider motion in x direction. Need not resolve. Allow $\sin \leftrightarrow \cos$. Condone +1 seen. Need not be simplified. Suitable uvast used for y with g $= \pm 9.8, \pm 10, \pm 9.81$ soi Need not resolve. Allow $\sin \leftrightarrow \cos$. Allow +1 omitted. Any form and 2 s. f. Need not be simplified All correct. +1 need not be justified. Accept any form and 2 s. f. Need not be simplified.	5
(ii) (A)	time taken to reach highest point $0=7 \sqrt{3}-9.8 T$ so $\frac{5 \sqrt{3}}{7}$ s $(1.23717 \ldots=1.24 \mathrm{~s}(3 \mathrm{~s}$. f.))	M1	Appropriate uvast. Accept $u=14$ and $\sin \leftrightarrow \cos$ and $u \leftrightarrow v$. Require $v=0$ or equivalent. $g= \pm 9.8, \pm 10, \pm 9.81 \text { soi. }$ ca [If time of flight attempted, do not award M1 if twice interval obtained]	2
(B)	$\begin{aligned} & \text { distance from base is } 7 \times \frac{5 \sqrt{3}}{7}=5 \sqrt{3} \mathrm{~m} \\ & (=8.66025 \ldots \text { so } 8.66 \mathrm{~m}(3 \mathrm{~s} . \mathrm{f} .)) \end{aligned}$	M1 B1	Use of their $x=7 t$ with their T FT their T only in $x=7 t$. Accept values rounding to 8.6 and 8.7.	2
(C)	either Height at this time is $H=7 \sqrt{3} \times \frac{5 \sqrt{3}}{7}-4.9 \times\left(\frac{5 \sqrt{3}}{7}\right)^{2}+1$ $=8.5$	M1 A1 A1	Subst in their quadratic y with their T. Correct subst of their T in their y which has attempts at all 3 terms. Do not accept $u=14$.	

	clearance is $8.5-6=2.5 \mathrm{~m}$ or for height above pt of projection $0=(7 \sqrt{3})^{2}+2 \times-9.8 \times s$ $s=7.5$ so clearance is $7.5-5=2.5 \mathrm{~m}$	E1 M1 A1 A1 E1	Clearly shown. Appropriate uvast. Accept $u=14$. $g= \pm 9.8, \pm 10, \pm 9.81 \text { soi }$ Attempt at vert cpt accept $\sin \leftrightarrow \cos$.Accept sign errors but not $u=14$. Clearly shown.	4
$\begin{array}{\|l} \hline \text { (iii } \\ \hline \end{array}$	See over			

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { (iii } \\
\& \text {) }
\end{aligned}
\] \& \begin{tabular}{l}
Elim \(t\) between \(y=7 \sqrt{3}\) \(=7 t\) \\
so \(y=7 \sqrt{3} \frac{x}{7}-4.9\left(\frac{x}{7}\right)^{2}+1 \quad t-4.9 t+1\) and \(x\) so \(y=7 \sqrt{3} \frac{x}{7}-4.9\left(\frac{x}{7}\right)^{+1}\) so \(y=\sqrt{3} x\)
\end{tabular} \& M1 \& \begin{tabular}{l}
their \\
quadratic ((accept bracket errors) \\
Must see their \(t=x / 7\) fully substituted in Accept any form correctly written. FT their \(x\) and 3 term quadratic \(y\) (neither using \(u=14\))
\end{tabular} \& 2 \\
\hline (iv) \& \begin{tabular}{l}
either \(\quad-0.1 x+1\)
need \(6=7 \sqrt{3} t-4.9 t^{2}+1\) \\
so \(4.9 t^{2}-7 \sqrt{3} t+5=0\) \\
\(t=\frac{5(\sqrt{3} \pm 1)}{7}(0.52289 \ldots\) or 1.95146...) \\
moves by \(\left(\frac{5(\sqrt{3}+1)}{7}-\frac{5 \sqrt{3}}{7}\right) \times 7\) \\
[(1.95146.. - 1.23717...) \() \times 7\)]
\[
=5 \mathrm{~m}
\] \\
or \\
using equation of trajectory with \(y=6\)
\end{tabular} \& M1
M1
A1
M1

A1 \& | their quadratic y from (i) $=6$, or equivalent. Dep. Attempt to solve this 3 term quadratic. (Allow $u=14$). |
| :--- |
| for either root |
| Moves by \|their root - their (ii)(A)|×7 or equivalent. |
| Award this for recognition of correct dist (no calc) |
| cao |
| [If new distance to wall found must have larger of 2 +ve roots for $3^{\text {rd }} \mathrm{M}$ and award max $4 / 5$ for 13.66] | \& \\

\hline
\end{tabular}

| $6=\sqrt{3} x-0.1 x^{2}+1$
 Solving $x^{2}-10 \sqrt{3} x+50=0$ $x=5(\sqrt{3} \pm 1)(13.660 \ldots \text { or } 3.6602 \ldots)$
 distance is $5(\sqrt{3}+1)-5 \sqrt{3}$ $=5 \mathrm{~m}$ | M1
 M1
 A1
 M1
 A1 | Equating their quadratic trajectory equn to 6 Dep. Attempt to solve this 3 term quadratic. (Allow $u=14$).
 for either root distance is \|their root-their(ii)(B)|
 Award this for recognition of correct dist (no calc)
 Cao
 [If new distance to wall found must have larger of $2+$ ve roots for $3^{\text {rd }} \mathrm{M}$ and award max $4 / 5$ for 13.66] |
| :---: | :---: | :---: |
| | | |

2		mark		
(1)	Height reached by first particle is given by $\begin{aligned} & 0=21^{2}-2 \times 9.8 \times s \\ & \text { so } s=22.5 \text { so } 22.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Other methods must be complete. Allow $g= \pm 9.8, \pm 10$ Accept with consistent signs	2
(ii)	Sol (1) t seconds after second particle projected its height is $15 t-4.9 t^{2}$ and the first particle has height $22.5-4.9 t^{2}$ (or $21 t-4.9 t^{2}$) either Sub $t=1.5$ to show both have same value State height as 11.475 m or $15 t-4.9 t^{2}=22.5-4.9 t^{2}$ giving $t=1.5$ and height as 11.475 m	M1 A1 M1 A1 E1 A1 M1 A1	Allow $g= \pm 9.8, \pm 10$ Allow $g= \pm 9.8, \pm 10$ Award only if used correctly (or sub $t=3.64$ into $21 t-4.9 t^{2}$ for $1^{\text {st }} \& t=1.5$ for $2^{\text {nd }}$) cao. Accept any reasonable accuracy. Don't award if only one correctly used equation obtained. Both. t shown. Ht cao (to any reasonable accuracy)	
	Sol (2) t seconds after second particle projected its height is $15 t-4.9 t^{2}$ and the first particle has fallen $4.9 t^{2}$ Collide when $15 T-4.9 T^{2}+4.9 T^{2}=22.5$ so $T=1.5$ $H=22.5-4.9 \times 1.5^{2}=11.475 \mathrm{~m}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { A1 } \end{aligned}$	Allow $g= \pm 9.8, \pm 10$ Or other correct method cao. Accept any reasonable accuracy. Don't award if only one correctly used equation obtained.	
	total	8		

3		mark		
(i)	$\begin{array}{ll} \text { Horiz } & (40 \cos 50) t \\ \text { Vert } & (40 \sin 50) t-4.9 t^{2} \end{array}$	B1 M1 A1	Use of $s=u t+0.5 a t^{2}$ with $a= \pm 9.8$ or ± 10. Allow $u=40$. Condone $\mathrm{s} \leftrightarrow \mathrm{c}$. Any form	
(ii)	Need $(40 \sin 50) t-4.9 t^{2}=0$ $\begin{aligned} & \text { so } t=\frac{40 \sin 50}{4.9} \\ & =6.2534 \ldots \text { so } 6.253 \mathrm{~s}(3 \mathrm{~d} . \mathrm{p} .) \end{aligned}$ Range is $(40 \cos 50) \times 6.2534$... $=160.78 \ldots \text { so } 161 \mathrm{~m} \text { (3 s. f.) }$	M1 M1 E1 M1 A1	Equating their y to zero. Allow quadratic y only Dep on $1^{\text {st }}$ M1. Attempt to solve. Clearly shown [or M1 (allow $u=40$ and $\mathrm{s} \leftrightarrow \mathrm{c}$) A1 time to greatest height; E1] Use of their horiz expression Any reasonable accuracy	5
(iii)	Time $A B$ is given by $(40 \cos 50) T=30$ so $T=1.16679 \ldots$ so 1.17 s then either By symmetry, time AC is time AD - time AB so time AC is $6.2534 \ldots-\frac{30}{40 \cos 50}$ $=5.086 \ldots$... so 5.09 s (3 s. f.) or height is $(40 \sin 50) T-4.9 T^{2}$ and we need $(40 \sin 50) t-4.9 t^{2}=(40 \sin 50) T-4.9 T^{2}$ solved for larger root i.e. solve $4.9 t^{2}-(40 \sin 50) t+29.08712 \ldots=0$ for larger root giving 5.086...	M1 A1 M1 A1 M1 A1	Equating their linear x to 30 . Symmetry need not be explicit. Method may be implied. Any valid method using symmetry. cao Complete method to find time to second occasion at that height cao	
(iv)	$\begin{aligned} & \&=40 \cos 50 \\ & \&=40 \sin 50-9.8 \times 5.086 \ldots \\ & \text { Need } \arctan \frac{\&}{\&} \\ & \text { So }-36.761 \ldots \\ & \text { so } 36.8^{\circ} \text { below horizontal }(3 \mathrm{~s} \text { f. }) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Must be part of a method using velocities. Use of vert cpt of vel Allow only sign error. FT use of their 5.086.. May be implied. Accept $\arctan \frac{\alpha}{\&}$ but not use of $\&$. Accept ± 36.8 or equivalent. Condone direction not clear.	
	total	17		

